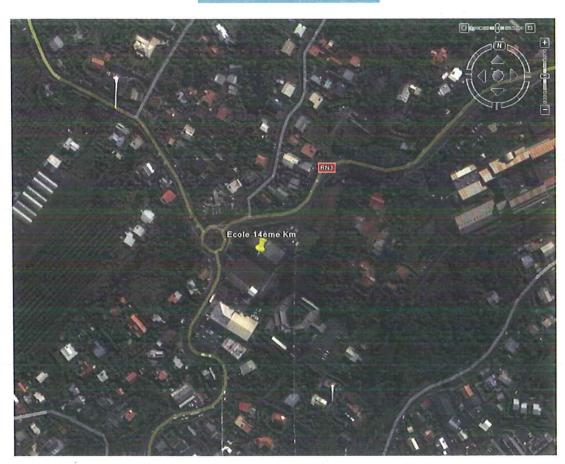


DOCUMENT D E 064 A

BILAN DE LA CAMPAGNE DE SURVEILLANCE DE LA QUALITE DE L'AIR REALISEE DANS L'ECOLE DU 14EME KM -COMMUNE DU TAMPON EN NOVEMBRE-DECEMBRE 2009.

Page 1 sur 9

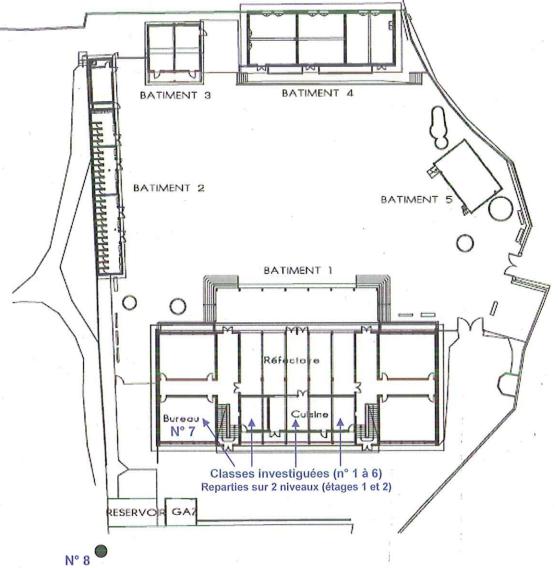

CA: 23 35 16 1

PERIODE DES CAMPAGNES DE SURVEILLANCE

N°	Emplacement	Type de mesure	Début de campagne	Fin de campagne
1	CE1B (Salle 6)	PP	23/11/2009	27/11/2009
1	CEID (Saile 0)	AA	02/12/2009	04/12/2009
2	CE2 A (Salle 8)	PP	23/11/2009	27/11/2009
_	CLZ A (Salle 6)	AA	30/11/2009	02/12/2009
3	CE2A (Salle 13)	PP	23/11/2009	27/11/2009
3	CLZA (Salle 13)	AA	23/11/2009	24/11/2009
4	(Salle 10)	PP	23/11/2009	27/11/2009
4	(Salle 10)	AA	25/11/2009	27/11/2009
_	CE1D (C-II- 10)	PP	23/11/2009	27/11/2009
5	CE1B (Salle 18)	AA	07/12/2009	09/12/2009
	(Salle 16)	PP	23/11/2009	27/11/2009
6		AA	09/12/2009	11/12/2009
-7	Dunani du Dinastani	PP	23/11/2009	27/11/2009
7	Bureau du Directeur	AA	14/12/2009	18/12/2009
8	Sur poteau, à proximité de l'école	PP	23/11/2009	27/11/2009

PP : Prélèvement passif suivi d'analyses en laboratoire ; AA : Relevés effectués à l'aide d'un analyseur automatique.

PLAN DE SITUATION



Plan d'ensemble de l'école élémentaire du 14 ème km :

ECOLE DU 14ème km REPERAGE DES BATIMENTS

ECH - 1/500

PLAN D'ENSEMBLE

DOCUMENT D E 064 A

BILAN DE LA CAMPAGNE DE SURVEILLANCE DE LA QUALITE DE L'AIR REALISEE DANS L'ECOLE DU 14EME KM -COMMUNE DU TAMPON EN NOVEMBRE-DECEMBRE 2009.

Page 3 sur 9

OBJECTIF DE LA SURVEILLANCE

Evaluation de la qualité de l'air dans l'école du 14^{ème} km, sur la commune du Tampon.

RESULTATS

1. NORMES REGLEMENTAIRES DES RELEVES EFFECTUES A L'AIDE DE TUBES A ECHANTILLONNAGE PASSIF

Les résultats obtenus à l'aide de tubes à échantillonnage passif, seront comparés à différentes références réglementaires, notamment :

OQ: Objectif de Qualité défini dans le décret n°2002-213 du 15 février 2002

VLPS : Valeur limite pour la protection de la santé humaine définie dans le décret n°2002-213 du 15 février 2002

VLEP : Valeurs limites d'exposition professionnelle définie dans les Fiches Toxicologiques de l'INRS (Institut National de Recherche et de Sécurité)

VG: Valeur guide, selon les recommandations de l'OMS.

	MOYENNE PONDEREE SUR 8 (μg/m³)	
	Benzène (C ₆ H ₆)	Toluène (C ₇ H ₈)
OQ		
VLPS		The words
VLEP	3 250	192 000
VG	R LESS MANY	

	MOYENNE
HI	EBDOMADAIRE
	(μg/m³)
	Toluène
	(C ₆ H ₅ CH ₃)
	260

	MOYENNE
	ANNUELLE
	(μg/m³)
	Benzène
	(C ₆ H ₆)
	2
	6
NO.	

2. RELEVES EFFECTUES A L'AIDE DE TUBES A ECHANTILLONNAGE PASSIF

N°	Emplacement	Début exposition	Fin exposition	Benzène (µg/m³)	Toluène (µg/m³)
1	CE1B (Salle 6)	23/11/2009	27/11/2009	0,7	9,9
2	CE2 A (Salle 8)	23/11/2009	27/11/2009	0,8	5,6
3	CE2A (Salle 13)	23/11/2009	27/11/2009	0,9	5,6
4	(Salle 10)	23/11/2009	27/11/2009	0,9	6,1
5	CE1B (Salle 18)	23/11/2009	27/11/2009	0,8	5,8
6	(Salle 16)	23/11/2009	27/11/2009	0,9	14,5
7	Bureau du Directeur	23/11/2009	27/11/2009	< L.O.D	< L.O.D
8	Sur poteau, à proximité de l'école	23/11/2009	27/11/2009	0,8	4,4

< L.O.D : Limite de détection

3. RELEVES EFFECTUES A L'AIDE D'UN ANALYSEUR AUTOMATIQUE

Les relevés effectués à l'aide de l'analyseur automatique vont permettre, pour chaque composé mesuré, de conclure sur la présence ou non dans l'air du polluant.

N° 1 : Salle 6

N°	Composant	Formule	
1	Dioxyde de carbone	CO ₂	
		СО	
2 3	Protoxyde d'azote	N ₂ O	
4	Méthane	CH ₄	
5	Dioxyde de soufre	SO ₂	
6	Dioxyde d'azote	NO ₂	
7	Benzène	C ₆ H ₆	
8	Toluène	C ₆ H ₅ CH ₃	
9	Styrène	C ₈ H ₈	
10	Ethyl benzène	C ₈ H ₁₀	
11	Limonène	C ₁₀ H ₁₆	
12	Aldéhyde acétique	CH₃CHO	
13	3 Monoxyde d'azote NO		
14 Acide fluorhydrique HF		HF	
15	Acide chlorhydrique	HCI	
16	Ammoniac	NH ₃	
17	Acide acétique	CH₃COOH	
18	Formaldéhyde	НСНО	
19	Méthylmercaptan	CH₃SH	
20	Ethylmercaptan	C₂H₅SH	
21	Méthylamine	CH ₃ NH ₂	
22 Acide propïonique		CH ₃ CH ₂ COOH	

Polluant détecté	
	_
	4
	-
	\dashv
	\dashv
	-
	\dashv
	-
	\dashv
	\exists
	_
	-
	_
X	\dashv
X	\exists
	_

Page 5 sur 9

N° 2: Salle 8

N°	Composant	Formule	Polluant détecté
1	Dioxyde de carbone	CO ₂	
2	Monoxyde de carbone	CO .	
3	Protoxyde d'azote	N ₂ O	
4	Méthane	CH ₄	
5	Dioxyde de soufre	SO ₂	. х
6	Dioxyde d'azote	NO ₂	
7	Benzène	C ₆ H ₆	
8	Toluène	C ₆ H ₅ CH ₃	
9	Styrène	C ₈ H ₈	
10	Ethyl benzène	C ₈ H ₁₀	
11	Limonène	C ₁₀ H ₁₆	
12	Aldéhyde acétique	CH₃CHO	
13	Monoxyde d'azote	NO	
14	Acide fluorhydrique	HF	
15	Acide chlorhydrique	HCI	
16	Ammoniac	NH ₃	
17	Acide acétique	CH₃COOH	
18	Formaldéhyde	НСНО	
19	Méthylmercaptan	CH₃SH	Х
20	Ethylmercaptan	C₂H₅SH	Х
21	Méthylamine	CH ₃ NH ₂	
22	Acide propïonique	CH₃CH₂COOH	

N° 3: Salle 13

N°	Composant Formule	
1	Dioxyde de carbone	CO ₂
2 Monoxyde de carbone		CO
3	Protoxyde d'azote	N ₂ O
4	Méthane	CH ₄
5	Dioxyde de soufre	SO ₂
6	Dioxyde d'azote	NO ₂
7	Benzène	C ₆ H ₆
8	Toluène	C ₆ H ₅ CH ₃
9	Styrène	C ₈ H ₈
10	Ethyl benzène	C ₈ H ₁₀
11	Limonène	C ₁₀ H ₁₆
12	Aldéhyde acétique	CH₃CHO
13	Monoxyde d'azote	NO
14	Acide fluorhydrique	HF
15	Acide chlorhydrique	HCI
16	Ammoniac	NH ₃
17	Acide acétique	CH₃COOH
18	Formaldéhyde	HCHO.
19	Méthylmercaptan	CH₃SH
20	Ethylmercaptan	C₂H₅SH
21	Méthylamine	CH ₃ NH ₂
22	Acide propïonique	CH₃CH₂COOH

Po	olluant détecté
	-
	1900
	Х
	38
	x
	^
-	
	V.

Page 6 sur 9

N° 4 : Salle 10

N°	Composant	Formule	Polluant détecté
1	Dioxyde de carbone	CO ₂	
2	Monoxyde de carbone	СО	
3	Protoxyde d'azote	N ₂ O	N.
4	Méthane	CH ₄	*
5	Dioxyde de soufre	SO ₂	Х
6	Dioxyde d'azote	NO ₂	
7	Benzène	C ₆ H ₆	
8	Toluène	C ₆ H ₅ CH ₃	
9	Styrène	C ₈ H ₈	
10	Ethyl benzène	C ₈ H ₁₀	
11	Limonène	C ₁₀ H ₁₆	
12	Aldéhyde acétique	CH₃CHO	
13	Monoxyde d'azote	NO	
14	Acide fluorhydrique	HF	
15	Acide chlorhydrique	HCI	
16	Ammoniac	NH ₃	
17	Acide acétique	CH₃COOH	
18	Formaldéhyde	НСНО	
19	Méthylmercaptan	CH₃SH	Χ .
20	Ethylmercaptan	C₂H₅SH	
21	Méthylamine	CH ₃ NH ₂	
22	Acide propïonique	CH₃CH₂COOH	

_	Х	
		-
	χ .	
_		

N° 5 : Salle 18

N°	Composant	Formule	Polluant détecté	
1	Dioxyde de carbone	CO ₂		
2	Monoxyde de carbone	CO		
3	Protoxyde d'azote	N ₂ O		
4	Méthane	CH ₄		
5	Dioxyde de soufre	SO ₂	0	
6	Dioxyde d'azote	NO ₂		
7	Benzène	C ₆ H ₆		
8	Toluène	C ₆ H ₅ CH ₃	3	
9	Styrène	C ₈ H ₈		
10	Ethyl benzène	C ₈ H ₁₀		
11	Limonène	C ₁₀ H ₁₆		
12	Aldéhyde acétique	CH₃CHO		
13	Monoxyde d'azote	NO ·		
14	Acide fluorhydrique	HF		
15	Acide chlorhydrique	HCI		
16	Ammoniac	NH ₃		
17	Acide acétique	CH₃COOH		
18	Formaldéhyde	НСНО		
19	Méthylmercaptan	CH₃SH	х	
20	Ethylmercaptan	C₂H₅SH	х	
21	Méthylamine	CH ₃ NH ₂		
22	Acide propïonique	CH₃CH₂COOH	9	

Polluani detecte	
0	
2	
	x x
	v
	^

Page 7 sur 9

N° 6 : Salle 16

N°	Composant	Formule	Polluant détecté
1	Dioxyde de carbone	CO ₂	
2	Monoxyde de carbone	CO	
3	Protoxyde d'azote	N ₂ O	
4	Méthane	CH ₄	
5	Dioxyde de soufre	SO ₂	9
6	Dioxyde d'azote	NO ₂	
7	Benzène	C ₆ H ₆	
8	Toluène	C ₆ H ₅ CH ₃	
9	Styrène	C ₈ H ₈	
10	Ethyl benzène	C ₈ H ₁₀	
11	Limonène	C ₁₀ H ₁₆	
12	Aldéhyde acétique	CH₃CHO	
13	Monoxyde d'azote	NO	
14	Acide fluorhydrique	HF	
15	Acide chlorhydrique	HCI	(4)
16	Ammoniac	NH ₃	
17	Acide acétique	CH₃COOH	
18	Formaldéhyde	HCHO	
19	Méthylmercaptan	CH₃SH	Х
20	Ethylmercaptan	C₂H₅SH	X
21	Méthylamine	CH ₃ NH ₂	
22	Acide propïonique	CH₃CH₂COOH	8

N° 7: Bureau du Directeur

N°	Composant	Formule
1	Dioxyde de carbone	CO ₂
2	Monoxyde de carbone	CO
3	Protoxyde d'azote	N ₂ O
4	Méthane	CH ₄
5	Dioxyde de soufre	SO ₂
6	Dioxyde d'azote	NO ₂
7	Benzène	C ₆ H ₆
8	Toluène	C ₆ H ₅ CH ₃
9	Styrène	C ₈ H ₈
10	Ethyl benzène	C ₈ H ₁₀
11	Limonène	C ₁₀ H ₁₆
12	Aldéhyde acétique	CH₃CHO
13	Monoxyde d'azote	NO
14	Acide fluorhydrique	HF
15	Acide chlorhydrique	HCI
16	Ammoniac	NH ₃
17	Acide acétique	CH₃COOH
18	Formaldéhyde	HCHO
19	Méthylmercaptan	CH₃SH
20	Ethylmercaptan	C₂H₅SH
21	Méthylamine	CH ₃ NH ₂
22	Acide propïonique	CH₃CH₂COOH

Poll	uant détecté
	-
	х
	х

DOCUMENT D E 064 A

BILAN DE LA CAMPAGNE DE SURVEILLANCE DE LA QUALITE DE L'AIR REALISEE DANS L'ECOLE DU 14EME KM -COMMUNE DU TAMPON EN NOVEMBRE-DECEMBRE 2009.

Page 8 sur 9

COMMENTAIRES

Du 23 novembre au 18 décembre 2009, l'Observatoire Réunionnais de l'Air (ORA) a mené une campagne de surveillance dans 7 salles situées dans l'école du 14 ème km et sur 1 site situé à l'extérieur de l'école, sur la commune du Tampon. A l'aide d'un analyseur automatique, les concentrations des différents polluants ont été relevées dans les 7 salles.

Parallèlement, l'ORA a mené une campagne de surveillance sur les 8 sites, à l'aide de tubes à échantillonnage passif. Les concentrations de benzène (C_6H_6) et de toluène (C_7H_8) ont été relevées.

Sur les 8 sites surveillés à l'aide d'échantillonneurs passifs :

Au vu de cette campagne de 5 jours de mesures, il apparaît, pour le benzène, que l'objectif de qualité ainsi que les valeurs limites annuelles définies dans le décret n°2002-213 devraient être respectées, ceci en extrapolant sur une année civile.

Pour le toluène, il apparaît que la VLEP définie par la fiche toxicologique de l'INRS ainsi que la VG définie par l'OMS devraient être respectées, ceci en extrapolant sur une année civile.

A titre d'information, les principales sources du toluène sont notamment, le trafic routier, les industries cosmétiques et/ou de fabrication de composés tels que les COV (Composé organique volatil). En effet, c'est un produit intermédiaire de synthèse pour la fabrication de nombreux produits tels que le benzène, le chlorure de benzyle, etc. C'est aussi un solvant d'extraction dans l'industrie cosmétique et l'industrie pharmaceutique. Par ailleurs, le toluène est utilisé, non isolé, en mélange avec le benzène et les xylènes, comme additif de carburants pour en améliorer l'indice d'octane. Il est donc présent dans certains produits pétroliers.

Sur les 7 sites surveillés à l'aide de l'analyseur automatique :

Au vu d'une campagne de 1 à 4 jours de mesure sur chacun des sites et pour les 20 polluants surveillés, il apparaît les conclusions suivantes :

Pour tous les sites, la présence de dioxyde de soufre et de méthylmercaptan a été détectée mais dans des proportions ne nécessitant pas d'autres études complémentaires. De plus, dans les sites n° 1, 2 ,5 et 6 ainsi que dans le bureau du directeur, des traces d'éthylmercaptan ont été relevés mais également dans des proportions ne nécessitant pas d'étude complémentaire.

Concernant les autres polluants relevés sur ces 7 sites, aucune présence n'a été détectée.

Les caractéristiques et origines probables des composés qui ont été détectés sont les suivants :

Caractéristiques des polluants :

- Le dioxyde de soufre est un gaz incolore, plus lourd que l'air, d'odeur piquante très irritante et perceptible dès 1,1 ppm.
- Le méthylmercaptan est un gaz incolore, présentant une odeur caractéristique de 'chou pourri'.
- L'éthylmercaptan est un gaz incolore, présentant une odeur caractéristique de 'chou bouilli'.

Sources des polluants :

Le dioxyde de soufre provient principalement de la combustion des combustibles fossiles (charbons, fiouls...), au cours de laquelle les impuretés soufrées contenues dans les combustibles sont oxydées par le dioxygène de l'air (O₂) en dioxyde de soufre SO₂.

Ce polluant gazeux est ainsi rejeté par de multiples petites sources (installation de chauffage domestique, véhicules ...) et par des sources ponctuelles plus importantes (centrales de production électrique ou de vapeur, chaufferies urbaines...).

Certains procédés industriels produisent également des effluents soufrés (production d'acide sulfurique, raffinage de pétrole, métallurgie des métaux non ferreux...). Dans certaines régions de la planète, comme à La Réunion, les éruptions volcaniques représentent une part très importante des rejets de dioxyde de soufre.

De manière générale, les pollutions olfactives, générées par l'ensemble des dérivés soufrés du type mercaptan et l'hydrogène sulfuré, se rencontrent dans de nombreuses activités humaines, notamment :

- L'industrie : effluents industriels notamment les industries liées à l'énergie, la chimie, au bois, au papier et à l'agro-alimentaire ;
- les déchets : industrie des sous-produits d'animaux, déchets ménagers, etc. et/ou
- les stations d'épuration.

Page 9 sur 9

Les principales sources de ces polluants sont notamment l'émission aérienne par combustion des végétaux, du pétrole, l'extraction de minerais, les processus industriels, les incinérateurs, l'élimination des déchets miniers et industriels, les industries agro-alimentaires.

En ce qui concerne cette étude, des composés soufrés ont bien été détectés, expliquant ainsi l'odeur ressentie dans les salles de classes mais avec des concentrations ne nécessitant pas d'autres interventions.

DIFFUSION

⇒ Organisme externe (Mairie du Tampon).

MISE A JOUR

INDICE	DATE	OBJET DE LA MODIFICATION	PAGE(S) MODIFIEES
А	14 mars 2011	Aucune - Création	Aucune

	REDIGE PAR	REVU PAR
Nom	Chatrapatty BHUGWANT	Bruno SIEJA
FONCTION	Ingénieur d'Etudes	Directeur
Visa	A	